Thrilia Rachianingrum Selasa,16-03-2021
(35) XI IPS 2
SOAL - SOAL YANG BERHUBUNGAN DENGAN TURUNAN
1. Diketahui biaya produksi barang sebuah perusahaan dinyatakan dalam fungsi f(x) = 8x² – 120x. Kemudian harga jual tiap barang dinyatakan dalam f(x) = 1/3 x² – 10x + 200. x menyatakan jumlah barang. Maka, untuk mencapai keuntungan maksimum, jumlah barang yang harus diproduksi adalah sebanyak…
a. 16 atau 20
b. 17 atau 20
c. 10 atau 20
d. 25 atau 30
e. 16 atau 19
JAWABANNYA : a. 16 atau 20
Penyelesaian:
Biaya Produksi = 8x² – 120x
Harga Jual tiap barang = 1/3 x² – 10x + 200
Keuntungan = Harga Jual semua Barang – Biaya Produksi
= (Jumlah Barang dikali Harga Jual tiap Barang) – Biaya Produksi
= x.(1/3 x² – 10x + 200) – (8x² – 120x)
= (1/3 x³ – 10x² + 200x) – (8x² – 120x)
= 1/3 x³ – 18x² + 320x
Untuk mencapai keuntungan maksimum, maka nilai stationernya = 0
f ‘ (x) = 0
x² -36x + 320 = 0
(x -16)(x – 20) = 0
x = 16 atau x = 20.
Jadi, jumlah barang yang harus dijual adalah 16 atau 20 buah.
2. Suatu perusahaan menghasilkan x produk dengan biaya sebesar
rupiah. Jika semua hasil produk perusahaan tersebut habis dijual dengan harga Rp5.000,00 untuk satu produknya, maka laba maksimum yang dapat diperoleh perusahan tersebut adalah...A. Rp. 149.000,00
B. Rp. 249.000,00
C. Rp. 391.000,00
D. Rp. 609.000,00
E. Rp. 757.000,00
Pembahasan ;
Biaya produksi x produk : 9.000 + 1.000x + 10x2
Biaya penjualan x produk : 5.000x
Laba = Biaya penjualan − Biaya produksi
L(x) = 5.000x − (9.000 + 1.000x + 10x2)
L(x) = 5.000x − 9.000 − 1.000x − 10x2
L(x) = −10x2 + 4.000x − 9.000
Laba akan maksimum, jika :
L'(x) = 0
−20x + 4.000 = 0
⇒ x = 200
Jadi, laba akan maksimum jika perusahaan menghasilkan 200 produk, dengan laba maksimumnya adalah :
L(200) = −10(200)2 + 4.000(200) − 9.000
L(200) = −400.000 + 800.000 − 9.000
L(200) = 391.000
3. Sebuah taman berbentuk persegi dengan keliling
m dan lebar . Agar luas taman maksimum, maka panjang taman tersebut adalah...A. 4 m
B. 8 m
C. 10 m
D. 12 m
E. 13 m
Pembahasan :
K = 2x + 24 = 2(x + 12)
l = 8 − x
K = 2(p + l)
2(x + 12) = 2(p + 8 − x)
x + 12 = p + 8 − x
p = 2x + 4
L = p . l
L = (2x + 4)(8 − x)
L = −2x2 + 12x + 32
Luas akan maksimum jika :
L' = 0
−4x + 12 = 0
⇒ x = 3
p = 2x + 4
p = 2(3) + 4
p = 10
Jadi, panjang taman agar luas maksimum adalah 10 m.
B. 40.000 m2
C. 20.000 m2
D. 5.000 m2
E. 2.000 m2
Area tanah yang akan dibatasi pagar adalah (p + 2l)
Perhatikan bentuk pagar, karena kawat yang digunakan 4 baris maka
4(p + 2l) = 800
p + 2l = 200
p = 200 − 2l
L = p × l
L = (200 − 2l) × l
L = 200l − 2l2
Luas akan maksimum jika :
L' = 0
200 − 4l = 0
⇒ l = 50
p = 200 − 2l
p = 200 − 2(50)
⇒ p = 100
L = p × l
L = 100 × 50
L = 5000
Jadi luas maksimum adalah 5000 m2
A. Rp.10.000,00
B. Rp.20.000,00
C. Rp.30.000,00
D. Rp.40.000,00
E. Rp.50.000,00
JAWABANNYA : D. Rp.40.000,00
Biaya produksi x unit : (5x2 − 10x + 30)x
Biaya penjualan x unit : 50x
(kedua biaya diatas dalam ribuan rupiah)
Keuntungan = Biaya penjualan − Biaya produksi
U(x) = 50x − (5x2 − 10x + 30)x
U(x) = 50x − 5x3 + 10x2 − 30x
U(x) = −5x3 + 10x2 + 20x
Keuntungan akan maksimum jika :
U'(x) = 0
−15x2 + 20x + 20 = 0 (bagi −5)
3x2 − 4x − 4 = 0
(3x + 2)(x − 2) = 0
x = atau x = 2
Jadi, keuntungan akan maksimum jika perusahaan memproduksi 2 unit barang, dengan keuntungan maksimumnya adalah :
U(2) = −5(2)3 + 10(2)2 + 20(2)
B. 8 dm , 5 dm, 1 dm
C. 7 dm, 4 dm, 2 dm
D. 7 dm, 4 dm, 1 dm
E. 6 dm, 3 dm, 1 dm
p = 8 − 2x
l = 5 − 2x
t = x
V = plt
V = (8 − 2x)(5 − 2x) x
V = (40 − 26x + 4x2) x
V = 4x3 − 26x2 + 40x
Volume akan maksimum jika :
V' = 0
12x2 − 52x + 40 = 0
3x2 − 13x + 10 = 0
(3x − 10)(x − 1) = 0
x = atau x = 1
Untuk x = 1, maka
p = 8 − 2x = 8 − 2(1) = 6
l = 5 − 2x = 5 − 2(1) = 3
t = x = 1
Jadi, volume akan maksimum jika panjang, lebar dan tinggi balok berturut-turut 6 dm, 3 dm, 1 dm.
7. Besar populasi di suatu daerah tahun mendatang ditentukan oleh persamaan . Laju pertambahan penduduk tahun mendatang adalah
A. jiwa per tahun
B. jiwa per tahun
C. jiwa per tahun
D. jiwa per tahun
E. jiwa per tahun
JAWABANNYA : C. 9.500 jiwa pertahun
Diketahui .
Laju pertambahan penduduk tahun mendatang dinyatakan oleh nilai turunan pertama saat . Turunan pertamanya adalah
Substitusi dan kita akan memperoleh
Jadi, laju pertambahan penduduk tahun mendatang adalah
A. 320
B. 295
C. 280
D. 260
E. 200
Pembahasan :
2m − n = 40
n = 2m − 40
p = m2 + n2
p = m2 + (2m − 40)2
p = m2 + 4m2 − 160m + 1600
p = 5m2 − 160m + 1600
p akan minimum jika :
p' = 0
10m − 160 = 0
⇒ m = 16
n = 2m − 40
n = 2(16) − 40
⇒ n = −8
p = m2 + n2
p = 162 + (−8)2
p = 320
A. 360 m2
B. 400 m2
C. 420 m2
D. 450 m2
E. 480 m2
Pembahasan :
Misalkan panjang kandang p dan lebar kandang l.
Persamaan panjang kawat yang digunakan untuk memagari kandang :
p + 4l = 80 → p = 80 - 4l
Persamaan luas kandang :
L = pl
L = (80 - 4l)l
L = 80l - 4l2
Turunan pertama L terhadap l :
L' = 80 - 8l
Luas akan maksimum jika L' = 0
80 - 8l = 0
80 = 8l
l = 10
Jadi, luas akan maksimum jika l = 10, dengan luas maksimumnya adalah
L = 80(10) - 4(10)2
L = 800 - 400
L = 400
A. 160 m
B. 200 m
C. 340 m
D. 400 m
E. 800 m
JAWABANNYA : b. 200 m
Pembahasan :
h(t) = 100 + 40t − 4t2
⇒ h'(t) = 40 − 8t
Tinggi peluru akan maksimum, jika :
h'(t) = 0
40 − 8t = 0
⇒ t = 5
Jadi, tinggi maksimum peluru dicapai pada saat t = 5, dengan tinggi maksimumnya adalah
h(5) = 100 + 40(5) − 4(5)2
h(5) = 100 + 200 − 100
h(5) = 200
Tidak ada komentar:
Posting Komentar