Senin, 08 Februari 2021

NILAI STASIONER, FUNGSI NAIK DAN FUNGSI TURUN

Thrilia Rachianingrum 
(35) XI IPS 2 
Selasa, 09-02-2021 


Materi, Soal, dan Pembahasan – Fungsi Naik dan Fungsi Turun

    Fungsi naikfungsi turun, dan fungsi diam (stasioner) merupakan kondisi dari turunan pertama suatu fungsi pada suatu interval tertentu. Kondisi yang dimaksud dapat berupa berikut.

  1. Jika f(x) bertanda positif, atau f(x)>0, maka kurva fungsi dalam keadaan naik (disebut fungsi naik).
  2. Jika f(x) bertanda negatif, atau f(x)<0, maka kurva fungsi dalam keadaan turun (disebut fungsi turun).
  3. Jika f(x) bertanda netral, atau f(x)=0, maka kurva fungsi dalam keadaan tidak turun dan tidak naik, istilahnya kita sebut sebagai stasioner (disebut juga fungsi diam).

Kondisi suatu fungsi y=f(x) dalam keadaan naik, turun, atau diam
Diberikan fungsi y=f(x) dalam interval I dengan f(x) diferensiabel (dapat diturunkan) pada setiap x di dalam interval I.

  1. Jika f(x)>0, maka kurva f(x) akan selalu naik pada interval I.
  2. Jika f(x)<0, maka kurva f(x) akan selalu turun pada interval I.
  3. Jika f(x)=0, maka kurva f(x) stasioner (tetap/diam) pada interval I.
  4. Jika f(x)0, maka kurva f(x) tidak pernah turun pada interval I.
  5. Jika f(x)0, maka kurva f(x) tidak pernah naik pada interval I.

Perhatikan sketsa grafik suatu fungsi f(x) berikut.

Perhatikan bahwa kurva yang ditandai dengan warna merah adalah ketika fungsi itu dikatakan naik, dan biru untuk fungsi turun. Titik a dan b disebut titik stasioner, yaitu titik di mana fungsi itu diam (tidak naik maupun tidak turun). Fungsi f(x) naik saat x<a atau x>b, sedangkan f(x) turun pada saat a<x<b.

Soal Nomor 1
Interval x yang membuat kurva fungsi f(x)=x36x2+9x+2 selalu turun adalah 
A. 1<x<3
B. 0<x<3
C. 1<x<3
D. x<1 atau x>3
E. x<0 atau x>3

Pembahasan

Diketahui f(x)=x36x2+9x+2, sehingga turunan pertamanya adalah f(x)=3x212x+9.
Kurva f(x) selalu turun jika diberi syarat f(x)<0.
3x212x+9<0Kedua ruas dibagi dengan 3x24x+3<0(x3)(x1)<01<x<3
Jadi, interval x yang membuat kurva fungsi f(x) selalu turun adalah 1<x<3
(Jawaban C)

[collapse]


Soal Nomor 2
Diberikan fungsi g(x)=2x39x2+12x. Interval x yang memenuhi kurva fungsi g(x) selalu naik adalah 
A. x<2 atau x>1
B. x<1 atau x>2
C. x<1 atau x>2
D. 1<x<2
E. 1<x<2

Pembahasan

Diketahui g(x)=2x39x2+12x, sehingga turunan pertamanya adalah g(x)=6x218x+12.
Kurva g(x) selalu naik jika diberi syarat g(x)>0.
6x218x+12>0Kedua ruas dibagi dengan 6x23x+2>0(x2)(x1)>0x<1 atau x>2
Jadi, interval x yang membuat kurva fungsi g(x) selalu naik adalah x<1 atau x>2
(Jawaban C)

[collapse]

Soal Nomor 3
Grafik fungsi p(x)=x(6x)2 tidak pernah turun dalam interval 
A. x2 atau x6
B. x2 atau x6
C. x<2 atau x6
D. x2 atau x>6
E. x<2 atau x>6

Pembahasan

Diketahui p(x)=x(6x)2. Turunan pertama p(x) dapat dicari secara manual dengan menjabarkan seperti berikut (pangkatnya masih kecil, sehingga masih sangat memungkinkan untuk dijabarkan).
p(x)=x(6x)2=x(3612x+x2)=36x12x2+x3p(x)=3624x+3x2
Grafik fungsi p(x) tidak pernah turun jika diberi syarat p(x)0.
3624x+3x20Kedua ruas dibagi dengan 3x28x+120(x2)(x6)0x2 atau x6
Jadi, interval x yang membuat grafik fungsi p(x) tidak pernah turun adalah x2 atau x6
(Jawaban B)

[collapse]

Soal Nomor 4
Grafik fungsi π(x)=x3+3x2+5 tidak pernah naik untuk nilai-nilai 
A. 2x0
B. 2x<0
C. 2<x0
D. x2 atau x0
E. 2<x<0Pembahasan

PEMBAHASAN 

Diketahui π(x)=x3+3x2+5, sehingga turunan pertamanya adalah π(x)=3x2+6x.
Grafik fungsi π(x) tidak pernah naik jika diberi syarat π(x)0.
3x2+6x0Kedua ruas dibagi dengan 3x2+2x0x(x+2)02x0
Jadi, interval x yang membuat grafik fungsi π(x) tidak pernah turun adalah 2x0
(Jawaban A)


Soal Nomor 5
Diberikan fungsi R(x)=x33x2+3x2. Nilai-nilai x dari fungsi tersebut mengakibatkan kurva fungsi R(x) 
A. tidak pernah naik
B. tidak pernah turun
C. bisa naik, bisa turun
D. selalu turun
E. selalu naik

Pembahasan

Diketahui R(x)=x33x2+3x2.
Turunan pertamanya adalah R(x)=3x26x+3. Selanjutnya, kita akan mencari titik stasioner fungsi tersebut, yakni saat R(x)=0.
3x26x+3=0Kedua ruas dibagi dengan 3x22x+1=0(x1)2=0x=1
Perhatikan bahwa pada ekspresi (x1)2, kita mendapati bahwa nilai darinya tidak mungkin bertanda negatif (ingat bahwa semua bilangan real yang dikuadratkan tidak akan bertanda negatif), sehingga grafik fungsi R(x) tidak pernah turun, melainkan stasioner (tetap) atau naik, seperti yang tampak pada sketsa gambar berikut.


L
KJJJ

(Jawaban B)





DAFTAR PUSTAKA  

https://mathcyber1997.com/materi-soal-dan-pembahasan-fungsi-naik-dan-fungsi-turun/#:~:text=Jika%20f%E2%80%B2(x)%20bertanda,naik%20(disebut%20fungsi%20naik).&text=Jika%20f%E2%80%B2(x)%20bertanda%20netral%2C%20atau%20f%E2%80%B2,(disebut%20juga%20fungsi%20diam)

Tidak ada komentar:

Posting Komentar

Pendapat Siswa Terhadap Pembelajaran Daring

   Nama : Thrilia Rachianingrum Kelas : XI IPS 2 No. Absen : 35 Assalamu'alaikum Wr. Wb   Pandemi Wabah Covid 19 mengubah sistem pebelaj...