MATERI PEMBUKTIAN DENGAN METODE : LANGSUNG, TIDAK LANGSUNG, KONTRADIKSI, DAN INDUKSI MATEMATIKA
Kontraposisi adalah salah satu metode pembuktian tidak langsung. Kontraposisi memanfaatkan salah satu prinsip dalam logika matematika yaitu
Artinya, kalau mau membuktikan pernyataan p akan menghasilkan pernyataan q itu benar, maka buktikan saja bila bukan q maka akan menghasilkan bukan p. Untuk memahami lebih lanjut coba deh buktikan
“Bila n bilangan bulat dan 7n + 9 bilangan genap, maka n bilangan ganjil”
Gimana nih membuktikannya pakai kontraposisi? Misalnya pernyataan p adalah 7n + 9 bilangan genap dan pernyataan q adalah n bilangan ganjil. Maka yang kita buktikan adalah bila n bukan bilangan ganjil (bilangan genap), maka 7n + 9 bukan bilangan genap (bilangan ganjil). Coba deh lihat gambar di bawah.
Terbukti kan bila n bukan bilangan ganjil maka 7n + 9 juga bukan bilangan genap? Secara nggak langsung dapat disimpulkan deh bila n bilangan bulat dan 7n + 9 bilangan genap maka n bilangan ganjil hehe.
Kontradiksi ini juga termasuk pembuktian tidak langsung, Squad. Kita memanfaatkan logika matematika
Jika p → q bernilai benar padahal q salah, maka p salah
Hmm gimana tuh maksudnya? Coba deh kita buktikan pernyataan ini dengan kontradiksi.
“Bila n bilangan bulat dan n bilangan genap maka 7n + 9 bilangan ganjil”
Nah kita misalkan dulu pernyataan p adalah n bilangan genap dan pernyataan q adalah 7n + 9 adalah bilangan ganjil. Maka dengan kontradiksi, kita buktikan nih misalnya pernyataan n bukan bilangan genap (bilangan ganjil) maka 7n + 9 adalah bilangan ganjil benar, akan muncul suatu kontradiksi. Coba deh perhatikan gambar di bawah.
Lihat kan ternyata ada kontradiksi bila n adalah bilangan ganjil? Maka secara tidak langsung, pernyataan bila n bilangan genap maka 7n + 9 bilangan ganjil benar.
Ada tiga langkah dalam induksi matematika yang diperlukan untuk membuktikan suatu rumus atau pernyataan. Langkah-langkah tersebut adalah :
- Membuktikan bahwa rumus atau pernyataan tersebut benar untuk n = 1.
- Mengasumsikan bahwa rumus atau pernyataan tersebut benar untuk n = k.
- Membuktikan bahwa rumus atau pernyataan tersebut benar untuk n = k + 1.
Untuk menerapkan induksi matematika, kita harus bisa menyatakan pernyataan P (k + 1) ke dalam pernyataan P(k) yang diberikan. Untuk meyatakan persamaan P (k + 1), substitusikan kuantitas k + Jenis Induksi Matematika
Sebagai ilustrasi dibuktikan secara induksi matematika bahwa .
- Langkah 1
untuk n = 1, maka :
1 = 1
Bentuk untuk n = 1 rumus tersebut benar.
- Langkah 2
Misal rumus benar untuk n = k, maka:
- Langkah 3
Akan dibuktikan bahwa rumus benar untuk n = k + 1. Sehingga:
Pembuktiannya:
(dalam langkah 2, kedua ruas ditambah
k + 1)
. (k + 1) dimodifikasi menyerupai )
(penyederhanaan)
(terbukti)
- Bilangan bulat hasil pembagian
Suatu bilangan dikatakan habis dibagi jika hasil pembagian tersebut adalah bilangan bulat. Sebagai ilustrasi, dibuktikan secara induksi matematika bahwa habis dibagi 9.
- Langkah 1
untuk n = 1, maka:
= 27
27 habis dibagi 9, maka n = 1 benar.
- Langkah 2
Misal rumus benar untuk n = k, maka :
(habis dibagi 9)
(b merupakah hasil bagi oleh 9)
- Langkah 3
Akan dibuktikan bahwa rumus benar untuk n = k + 1. Pembuktian:
kemudian dimodifikasi dengan memasukan .
… akan habis dibagi oleh 9 (terbukti)
Contoh Soal Induksi Matematika dan Pembahasan
Contoh Soal 1
Buktikan bahwa .
Pembahasan:
- Langkah 1
(terbukti)
- Langkah 2 (n = k)
- Langkah 3 (n = k + 1)
.
(kedua ruas ditambah .
{terbukti).
Contoh Soal 2
Buktikan bahwa
Pembahasan:
- Langkah 1
(terbukti)
- Langkah 2 (n = k)
- Langkah 3 (n = k + 1)
Dibuktikan dengan:
(kedua ruas dikali )
(2k dimodifikasi menjadi 2k+1)
(terbukti)
Contoh Soal 3
Buktikan bahwa habis dibagi 5.
Pembahasan:
- Langkah 1
habis dibagi 5 (terbukti)
- Langkah 2 (n = k)
- Langkah 3 (n = k + 1)
(dalam kurung dibuat sama
dengan bentuk soal)
( dibuat 10 dan dibuat 5, agar bisa dibagi 5)
Didapatkan :
- habis dibagi 5
- habis dibagi 5
- sama dengan langkah 2, habis dibagi 5